
Binacox: automatic cut-points detection in high-dimensional Cox model
Simon Bussy1, Mokhtar Z. Alaya2, Agathe Guilloux3 and Anne-Sophie Jannot4

1LPSM, UMR 8001, Sorbonne University, Paris, France 2Modal’X, UPL, Univ Paris Nanterre, F92000 Nanterre France 3LaMME, UEVE and UMR 8071, Paris Saclay University, Evry, France
4Biomedical Informatics and Public Health Department European Georges Pompidou Hospital, Assistance Publique-Hôpitaux de Paris and INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France

Objectives

1 Introduce the cut-points detection problem
2 Present the estimation procedure
3 Give theoretical guarantees
4 Illustrate the method on simulated and real
high-dimensional data

Introduction

Translating significant continuous prognostic
biomarkers into clinical decision often requires
determining cut-points. We introduce a prognostic
method called Binacox to deal with this problem
of detecting multiple cut-points per features in a
multivariate high-dimentional survival setting.
Let us denote T and C the times of the event of
interest and censoring times respectively, X ∈ Rp

the vector of features, Z = T ∧C the right-censored
time and ∆ = 1({T ≤ C}) the censoring indicator.
Assume that intensity of events for patient i is given
by

λ?(t|Xi = xi) = λ?0(t)ef ?(xi), (1)

where λ?0(t) is the baseline hazard function, and

f ?(xi) =
p∑

j=1

K?
j+1∑

k=1
β?j,k1(xi,j ∈ I?j,k), (2)

with I?j,k = (µ?j,k−1, µ
?
j,k] for k ∈ {1, . . . , K?

j + 1}.
Our goal is to estimate simultaneously µ? and β?.

Fig.1: Illustration of data simulated according to (1).

Binarization

First, we one-hot encode all features to obtain
xBi = (xBi,1,1, . . . , xBi,1,d1+1, . . . , x

B
i,p,1, . . . , x

B
i,p,dp+1)>,

with xBi,j,l =





1 if xi,j ∈ Ij,l,
0 otherwise,

and where Ij,l =

(µj,l−1, µj,l] with µj,l = l/(dj + 1) for instance.
Hence, we define

fβ(xi) = β>xBi =
p∑

j=1
fβj,•(xi)

where fβj,•(xi) = ∑dj+1
l=1 βj,l1(xi,j ∈ Ij,l). Thus, fβ is

a candidate for the estimation of f ? in (2).
We obtain the binarized partial negative log-
likelihood
`n(fβ) = −1

n

n∑

i=1
δi

{
fβ(xi)− log

∑

i′:zi′≥zi
efβ(xi′)

}
.

Estimation procedure

The optimization problem is
β̂ ∈ argminβ∈Bp+d(R)

{
`n(fβ) + bina(β)

}

where Bp+d(R) = {β ∈ Rp+d : ‖β‖2 ≤ R} is the
`2-ball of radius R > 0 in Rp+d and

bina(β) =
p∑

j=1

( dj+1∑

l=2
ω̂j,l|βj,l − βj,l−1| + δ1(βj,•)

)
,

with

δ1(u) =





0 if 1>u = 0,
∞ otherwise.

Let Aj(β̂) =
{
l : β̂j,l 6= β̂j,l−1

}
= {l̂j,1, . . . , l̂j,sj},

then one get
µ̂j,• = (µj,l̂j,1, . . . , µj,l̂j,sj)

>,

with sj = |Aj(β̂)| = K̂j.

Fast oracle inequality in prediction

One has KLn(f ?, fβ̂) ≤ (1 + c1) inf β∈Bp+d
∀j,1>βj,•=0



KLn(f

?, fβ) + c2|A(β)|maxj=1,...,p ‖(ω̂j,•)Aj(β)‖2
∞



 with

high-probability, where ω̂j,l = O
(
dj
√
πn log(p + d)/n

)
are data-driven weights, πn = |{i = 1, . . . , n : δi =

1}|/n, and c1, c2 are positive constants (with c2 resulting from compatibily conditions).

Simulation study
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Fig.2: Results on data simulated in Figure 1.
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Fig.3: Comparison using metric m1 = |S ′|−1∑
j∈S ′ H(M?

j,M̂j) whereM?
j (resp. M̂j) is

the set of true (resp. estimated) cut-points for feature j and H the Hausdorff distance, and
S ′ the indexes of features with at least one true cut-point.
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Fig.4: m2 = |S|−1∑
j∈S K̂j with

S the indexes of features with no
cut-point.

Results on TCGA data
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Fig.5: Illustration on the top-4 genes of GBM cancer. For
instance, the first gene SOD3 is related to an antioxidant
enzyme that may protect in particular the brain from oxidative
stress, which is believed to play a key role in tumor formation.

Table: Comparison of risk prediction in terms of C-index on
three TCGA datasets. Taking into account the detected
cut-points significantly improves predictions.

Cancer Continuous Binacox MT-B MT-LS CoxBoost RSF
GBM 0.660 0.806 0.753 0.768 0.684 0.691
KIRC 0.682 0.727 0.663 0.663 0.679 0.686
BRCA 0.713 0.849 0.741 0.738 0.723 0.746

Conclusion

Our method provides a new way to model nonlinear
features associations, and powerful interpretation as-
pects that could be useful in both clinical research
and daily practice: in addition to its raw feature
selection ability, the estimated cut-points could di-
rectly be used in clinical routine.
Software: github.com/SimonBussy/binacox.
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